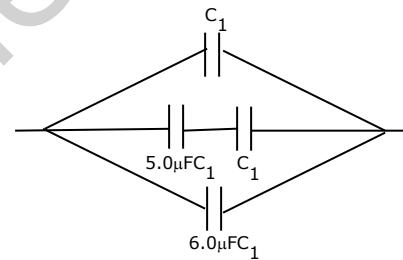


Q- Find the equivalent capacitance between points *a* and *b* in the combination of capacitors shown in Figure. $C_1 = 2.0 \mu\text{F}$ and $C_2 = 3.0 \mu\text{F}$.


Looking minutely, both terminals of C_1 and $6.0 \mu\text{F}$ capacitors are connected directly between the *a* and *b*. Similarly, the series connection of $5.0 \mu\text{F}$ and C_2 is also connected directly to *a* and *b*. Thus, the circuit is having C_1 , $6.0 \mu\text{F}$ capacitors and the series combination of $5.0 \mu\text{F}$ and C_2 are in parallel as in figure. The equivalent capacitance of the series combination of $5.0 \mu\text{F}$ and C_2 is equal to (units are in μF)

$$\frac{C_2 * 5.0}{C_2 + 5.0}$$

Thus the equivalent capacitance of the circuit is given by

$$C = C_1 + 6.0 + \frac{C_2 * 5.0}{C_2 + 5.0}$$

$$\text{Or } C = 2.0 + 6.0 + \frac{3.0 * 5.0}{3.0 + 5.0} = 9.875 \mu\text{F}$$

